Unsupervised Learning of Object Structure and Dynamics from Videos

Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin Murphy, Honglak Lee Google Research

Introduction

Many vision tasks require an understanding of **object motion**. Learning representations of object structure and dynamics from pixels, without supervision, is a major challenge.

We propose an object-centric model of video that lear keypoint-based representations.

By learning dynamics in the keypoint space, we avoid accumulation of pixel errors and can make **high-quality and** diverse long-term predictions.

Our model improves both on **video prediction** and on downstream tasks that require an understanding of object motion.

4 Video prediction

2 Structured image representation We use an autoencoder that learns to represent images as a

set of **keypoints** using only an image reconstruction loss (Jakab et al., 2018).

To encourage **keypoint-object correspondence**, we add losses to make keypoints **sparse** and their trajectories decorrelated in time.

5 Metrics and ablations

3 Latent dynamics model

We learn dynamics in the **keypoint space**. We thus never need to condition on predicted images.

The dynamics model (VRNN) has a **deterministic** and a **stochastic** pathway to model long-term stochastic trajectories.

We use a "**best of many samples**" objective to further encourage diverse predictions.

Fréchet Video Distance measures the difference from ground-truth videos.

Keypoint structure, stochasticity and best-of-many objective all contribute to

Keypoint losses stabilize training and

(Each dot is one model initialization.)

The **coordinate tracking error** of the model gets close to that of a

6 Using the learned representations

A promising use case for our model are **control tasks** with spatially defined rewards, e.g. in robotics.

As a first step, we show that our model performs better at reward prediction than a baseline with an unstructured representation in a suite of simulated control tasks:

Our paper contains more experiments on downstream applications, exploring counterfactual scenarios by manipulating keypoints, and more.

For videos and code, see **mjlm.github.io/video_structure**