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1 Introduction

Many vision tasks require an understanding of object motion.

Learning representations of object structure and dynamics
from pixels, without supervision, is a major challenge.

We propose an object-centric model of video that lear
keypoint-based representations.
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By learning dynamics in the keypoint space, we avoid
accumulation of pixel errors and can make high-quality and
diverse long-term predictions.

Our model improves both on video prediction and on
downstream tasks that require an understanding of object
motion.
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2 Structured image representation

We use an autoencoder that learns to represent images as a
set of keypoints using only an image reconstruction loss
(Jakab et al., 2018).

To encourage keypoint-object correspondence, we add
losses to make keypoints sparse and their trajectories
decorrelated in time.

3 Latent dynamics model

We learn dynamics in the keypoint space. We thus never
need to condition on predicted images.

The dynamics model (VRNN) has a deterministic and a
stochastic pathway to model long-term stochastic
trajectories.

We use a "best of many samples" objective to further
encourage diverse predictions.
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4 Video prediction 5 Metrics and ablations 6 Using the learned representations
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The coordinate tracking error of the
model gets close to that of a
supervised model.
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Our paper contains more experiments on downstream
applications, exploring counterfactual scenarios by
manipulating keypoints, and more.
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For videos and code, see mjim.github.io/video_structure



