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SUMMARY

Neuronal representations change as associations
are learned between sensory stimuli and behavioral
actions. However, it is poorly understood whether
representations for learned associations stabilize in
cortical association areas or continue to change
following learning. We tracked the activity of poste-
rior parietal cortex neurons for a month as mice
stably performed a virtual-navigation task. The rela-
tionship between cells’ activity and task features
was mostly stable on single days but underwent
major reorganization over weeks. The neurons infor-
mative about task features (trial type and maze loca-
tions) changed across days. Despite changes in indi-
vidual cells, the population activity had statistically
similar properties each day and stable information
for over a week. As mice learned additional associa-
tions, new activity patterns emerged in the neurons
used for existing representations without greatly
affecting the rate of change of these representations.
We propose that dynamic neuronal activity patterns
could balance plasticity for learning and stability for
memory.

INTRODUCTION

Cortical neurons form associations between sensory stimuli

and behavioral actions. For example, landmarks are associ-

ated with specific actions during navigation, and arbitrary

categories of sensory cues can guide relevant behavioral re-

sponses (Freedman and Assad, 2016; Harvey et al., 2012).

Past work studying the representations for sensorimotor asso-

ciations has focused on brain areas at the interface of sensa-

tion and action, including posterior parietal cortex (PPC).

Studies of PPC have commonly measured neuronal activity

at single snapshots in time. For example, in typical experi-

ments, one set of neurons is studied on one day and a sepa-

rate population of neurons is examined on the next day.

Therefore, temporal features of PPC representations across

days and weeks have not been examined systematically. It

is thus poorly understood whether PPC activity converges to

a stable pattern following learning or whether neuronal activity

patterns continue to change.
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A common framework for memory proposes a direct and fixed

mapping of neuronal activity with sensory stimuli and behavioral

actions. In this framework, learned associations develop by link-

ing these fixed representations (Messinger et al., 2001; Sakai

and Miyashita, 1991). During learning, synaptic and other bio-

physical changes are hypothesized to minimize errors in the

link between sensory stimuli and behavioral outputs, eventually

converging to a stable solution (Ganguly and Carmena, 2009;

Peters et al., 2014). This view proposes that a memory engram

is a collection of the same neurons that are activated every

time the learned association is recalled (Tonegawa et al.,

2015). Alternatively, experimental data indicate that synaptic

connections between neurons continually change over time. In

some cases, only a small fraction of synaptic connections persist

over weeks (Attardo et al., 2015; Stettler et al., 2006; Trachten-

berg et al., 2002). Theoretical models propose that continuous

change in neuronal circuits can optimize a tradeoff between sta-

bility and flexibility by sampling frommultiple solutions of activity

patterns and connectivity that similarly convey relevant informa-

tion (Ajemian et al., 2013; Kappel et al., 2015; Rokni et al., 2007).

Such changes could present computational benefits, such as

limiting the likelihood of overtraining and convergence to local

optima.

Recent methods to track the activity of the same neurons over

days have led to studies of neuronal activity patterns over time.

Studies in sensory cortex have revealed that representations of

stimulus features are generally stable over the examined periods

(Andermann et al., 2010; Mank et al., 2008; Margolis et al., 2012;

Peron et al., 2015; Poort et al., 2015; Rose et al., 2016; Tolias

et al., 2007). In motor cortex, the stability of activity patterns

for generating actions is a controversial topic. Many studies

have noted stability in motor cortex activity, but some have iden-

tified subtle shifts in tuning over days (Chestek et al., 2007;

Ganguly and Carmena, 2009; Huber et al., 2012; Padoa-

Schioppa et al., 2004; Peters et al., 2014; Rokni et al., 2007; Ste-

venson et al., 2011). Also, a recent study reported a mix of stable

and changing features in the activity of HVCduring birdsong (Lib-

erti et al., 2016). The largest changes in neuronal activity patterns

have been noted in the hippocampus. Upon repeated exposure

to the same environment, place cell activity was gained and lost

in individual cells (Kentros et al., 2004; Ziv et al., 2013).

These studies suggest a possible range of stability in neuronal

representations, perhaps with greater stability in areas more

closely related to sensation or action and less stability in the hip-

pocampus. However, these emerging ideas are based on a rela-

tively small number of studies that collectively have sampled
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limited numbers of brain regions. In addition, some previous

work focused on changes in the absence of learned behaviors,

during tasks that did not require activity in the region being

studied, and without systematic quantification of the relationship

between activity and behavior over time (Attardo et al., 2015; Ziv

et al., 2013). These limitations have arisen in part due to diffi-

culties in tracking the activity of the same neurons over time

because, with methods such as electrophysiology or supra-

cellular resolution imaging, it can be difficult to obtain reliable

metrics of cell identities across days.

Here, we tested whether arbitrary stimulus-action pairings

develop stable representations in mouse PPC after learning.

We tracked the activity of populations of neurons and behav-

ioral patterns across weeks as mice performed a navigation-

based task in virtual reality at near-perfect levels. We focused

on activity in PPC because it is essential for performing this

task and in rodents contributes to learned sensorimotor asso-

ciations (Harvey et al., 2012; McNaughton et al., 1994; Nitz,

2006; Whitlock et al., 2012). Activity patterns in individual neu-

rons changed greatly over days and weeks, such that the pop-

ulation of neurons with the most task-relevant information

drifted over time. Despite changes in single cells, the PPC

population maintained a steady state with the same statistics

of population activity. Information about the task could be de-

coded from population activity above chance levels across

days using a stable readout despite changes in individual

neurons. Also, representations of newly learned cue-response

relationships developed without greatly perturbing existing

representations. We propose that drift in neuronal activity

patterns could be important for mediating a tradeoff between

stable encoding of information and flexibility for incorporating

new information in PPC.

RESULTS

Tracking Behavior and Neuronal Activity over Weeks
We trained mice to perform a two-alternative forced-choice

task based on navigation through a T-maze in visual virtual

reality (Harvey et al., 2012; Figure 1A). At the beginning of

the T-stem, mice saw one of two visual cues (white or black

walls). Mice then ran through a delay portion of the T-stem in

which the walls were identical between trial types. Upon reach-

ing the T-intersection, mice reported the cue identity by making

a left or right turn to receive a reward. Mice achieved expert

behavioral performance that was mostly stable over weeks

(Figure 1B).
Figure 1. Chronic Imaging during Stable Performance of a Virtual-Nav

(A) Schematic of the task.

(B) Behavioral performance for five mice.

(C) Example imaging plane with a subset of cells identified across days in color.

(D) Example cells over weeks. Left columns: mean fluorescence image is shown. M

and black cue-right turn trials is shown. Right columns: mean activity on correc

Figure S2 for cell-identification protocol.

(E) Sorted peak-normalized mean activity of neurons with a significant peak of a

(F) Left: task performance on optogenetic inactivation and control trials for 4 mic

trials within 7-day time bins is shown. Error bars: mean ± SEM across mice. n =

inactivation trials; permutation test. Control mouse not expressing ChR2: p = 0.1

See also Figures S1 and S2.
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We imaged the activity of layer 2/3 PPC neurons. Our field of

view corresponded to the area the Allen Brain Institute has

named the VISa area of PTLp, as revealed by separate experi-

ments using retinotopic mapping (Mouse and Coordinate,

2016; Figure S1). For consistency with earlier work, we called

this region PPC and note that it is anterior to visual area AM

and overlapping with, but shifted medially from, what previous

work called area A (Wang and Burkhalter, 2007). Imaging was

performed every day with occasional 1-day gaps. We developed

approaches to identify the same neurons on each day (Figures

1C, 1D, and S2; STAR Methods). First, we identified fluores-

cence signal sources (putative cells) on each day independently,

on the basis of temporally correlated fluctuations between

pixels, rather than manual, anatomical methods that can fail to

separate nearby cells, dendrites, and axons. Cells had to have

calcium transients to be identified by this method. Second, we

aligned putative cells across days by matching regions-of-inter-

est (ROIs) with similar locations and neighborhoods from one

day to the next. Finally, we visually compared each identified

cell across all days to ensure that cells appeared consistent in

the anatomical images on each day (Figure 1D). We considered

cells only on days in which they were identified with high confi-

dence. Not all cells were identified on every day.

Necessity of PPCActivity for Post-learning Performance
of the Task
The activity patterns of PPC neurons on a single day were

consistent with those reported previously (Harvey et al., 2012;

Morcos and Harvey, 2016). Individual neurons were transiently

active, such that PPC activity tiled the duration of a trial (Fig-

ure 1E). Many of these responses were reliable and selective

for a particular trial type. For example, some cells were more

active on black cue-right turn trials than on white cue-left turn tri-

als or vice versa (Figure 1E).

PPC activity was necessary for the mouse to perform the

behavioral task. In a separate cohort of mice, at a location

centered at PPC, we activated channelrhodopsin-2 in parvalbu-

min-expressing interneurons to inhibit excitatory activity on a

subset of trials. Inactivation decreased the mouse’s behavioral

performance from �85% correct to just above chance levels

(Figure 1F). Similar results were obtained weeks after the mouse

achieved plateau performance, suggesting that PPC activity was

necessary for performing the task, even in the post-learning

phase. These results were consistent with our earlier pharmaco-

logical inactivation experiments and other studies showing a role

for rodent PPC in visual decision tasks (Goard et al., 2016;
igation Decision Task

See Figure S1 for PPC coordinates.

iddle columns: deconvolved fluorescence signal on correct white cue-left turn

t white cue-left turn (blue) and black cue-right turn (red) trials is shown. See

ctivity, combined from 1 day each for 5 mice.

e, combined across days. Right: task performance for inactivation and control

3, 3, 4, 2, and 1 mice for the bins, respectively. ***p < 0.001; control versus

8.
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Figure 2. Reorganization of Activity within a Trial across Days

(A) Normalized mean activity of neurons identified on all 3 imaging days with a statistically significant peak in the sorted day. Sorting was the same for each day

within a row and was different across rows.

(B) For cells with a highly significant (99%confidence) peak of activity on a given day, the fraction of cells that had a significant (95%confidence) peak of activity at

a similar location (<70 cm shift) on a subsequent day (p < 10�8 versus time; ANOVA). Shading: mean ±SEM. n = 5mice, except for large intervals (Figure S1A). The

gray area indicates 95% confidence intervals of chance levels based on shuffling the cell IDs separately on each day.

(C) Fraction of cells with a significant peak. p = 0.85 versus time; ANOVA. Error bars: mean ± SEM. n = 5, 5, and 4 mice, respectively.

(D) Left: for cells with a significant peak on day n and day n + x, the fraction of peaks that shifted by greater than 0.35 m, 0.5 m, and 1 m. Fraction moved 0.35 m

versus time: p = 0.019; ANOVA. Center: for cells with a highly significant peak on day n, the fraction of cells that did not have a significant peak on day n + x is

shown. Fraction lost versus time: p < 10�9; ANOVA. Right: for cells without a significant peak of activity on day n, the fraction of cells with a highly significant peak

on day n + x is shown. Fraction gained versus time: p = 0.96; ANOVA.
Harvey et al., 2012; Licata et al., 2017; Raposo et al., 2014). We

note that, although inactivation was centered on PPC, such ac-

tivity manipulations may have effects that spread beyond PPC

(Otchy et al., 2015).

Reorganization of Sequential Activity across Maze
Locations
To compare the activity patterns of neurons across days, we first

focused on sequential activity throughout a trial. On each day, a

sequence of neuronal activity was present (Figure 2A). To deter-

mine whether this sequence was the same from day to day, we

sorted neurons based on where in the maze they had a reliable

peak of activity. We then used the same sorting on earlier or later

days (Figure 2A). Cells that had a significant peak of activity on a

given day were unlikely to have a significant peak of activity at

the same or nearby position over weeks (Figure 2B). Over time,

the likelihood of a consistent peak position approached levels

expected from a random reorganization of neuronal identities

(Figure 2B). Changes in activity peaks from the first half to the

second half of the session were small but greater than frommea-

surement noise (changes quantified between odd and even trials

within a session; p = 0.017). The changes across time resulted
from cells with a peak of activity on one day either losing that

peak or having a shift in the peak’s location on subsequent

days, both of which increased in likelihood with time from

when a peak was identified (Figure 2D). The loss of peaks of ac-

tivity was offset by an approximately constant rate at which cells

initially lacking a peak of activity gained an activity peak (Fig-

ure 2D), resulting in a consistent fraction of active cells with ac-

tivity peaks on each day (Figure 2C). Together, these results indi-

cate that activity patterns changed over time, with major

reorganization occurring over several weeks.

Different Populations of Neurons with Trial-Type-
Specific Activity Patterns across Days
We also investigated changes in activity patterns related to infor-

mation about the trial type. Specifically, we asked whether the

neurons that had different activity patterns on trials with different

cues and choices were the same across time. For each neuron

on each day, we used a decoder to quantify how well that neu-

ron’s activity predicted trial type across the duration of a trial

(white cue-left turn versus black cue-right turn). On a given

day, a significant fraction of active neurons had a decoding ac-

curacy above chance (29.1% ± 1.1% of neurons; p < 0.05
Cell 170, 986–999, August 24, 2017 989
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Figure 3. Reorganization of Information about Trial Type across Days

(A) Decoding accuracy for trial type based on the activity of individual neurons, sorted by day 1.

(B) For an example day, cells were sorted by their trial-type decoding accuracy. Decoding accuracy is shown on the day used for sorting (black) and on sub-

sequent days (gray).

(C) For the cells that were identified on R15 days, the fraction of days in which a cell’s activity had above chance decoding accuracy, relative to the number of

days in which the cell was identified. Chance: p < 0.05; permutation test.

(D) Given high confidence for significant decoding accuracy on day n (99% confidence), the fraction of cells with greater than chance decoding accuracy (95%

confidence) on day n + x. p < 10�11 versus time; ANOVA. Error bars: mean ± SEM. n = 5 mice. Gray area, 95% confidence intervals of chance levels based on

shuffling cell IDs separately on each day.

(E) Decoding accuracies for cells with the top and bottom 20% decoding on day n over time.

(F) Trial type preference for the cells in (A) sorted by trial type preference on day 1, based on decoding model weights averaged over spatial bins in the maze.

(G) Example cell with dynamic trial-type information. Top: mean fluorescence image is shown. Bottom: mean activity on correct white cue-left turn (blue) and

black cue-right turn (red) trials is shown.

(H) Decoder weights for the cells with the 20% largest and 20% smallest decoding weights on day n over time.
compared to decoding with shuffled trial labels). These neurons

generally had consistent decoding accuracies within a session

(p = 0.28 versus changes in odd/even trials; Figure 3D). However,

neurons that had high decoding accuracies on a given day did

not necessarily have significant decoding accuracies on subse-

quent days (Figures 3A and 3B). A large majority of neurons had

significant decoding accuracy on fewer than half of the days in

which they were identified (Figure 3C). Moreover, only �2% of

these neurons had significant decoding accuracy on all days in
990 Cell 170, 986–999, August 24, 2017
which they were identified. The likelihood that a cell with greater

than chance decoding accuracy on a given day had significant

decoding accuracy on a subsequent day decreased with the in-

terval between compared days and approached levels consis-

tent with a random reorganization of cell identities (Figure 3D).

In addition, we tracked the subpopulation of neurons that was

the most highly informative about trial type on a given day.

Over time, the distribution of decoding accuracy within this

subpopulation approached and largely overlapped with the
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Figure 4. Using a GLM to Track Changes in Neuronal Activity-Behavior Relationships across Days

(A) For each neuron on each day, a GLMwas fit to the activity of the neuron based on behavior features. Model coefficients for behavioral features were fit on one

day and applied to behavioral data from another day to predict neuronal activity across days. See Figures S3, S4, S5, and S6.

(B) For an example cell, mean activity for white cue-left turn (blue) and black cue-right turn (red) trials on imaging days 3 and 9, with model predictions (gray) for

fitting and testing on the same or opposite days.

(C) Left: deviance explained bymodels fit on one day and tested on the same or a different day, averaged across cells and thenmice. See Figure S1C for n values.

Right: average deviance explained as a function of time between the fitting and testing days is shown. Shading: mean ± SEM.

(D) Schematic for model comparisons binarized as significant and poor predictions; threshold of 0.2 deviance explained, chosen based on a bootstrap analysis

(STAR Methods).

(E) Left: for cells without a significant model prediction on day n, the fraction of cells with a significant model prediction after a given interval. Right: for cells with a

significant model prediction on day n, the fraction of cells with consistent (black), lost (medium gray), or switched (light gray) activity-behavior relationships after a

given interval is shown. Shaded area: mean ± SEM. n = 5 mice, except for large intervals (Figure S2K).

(F) Mean activity for example cells with varying consistency in activity-behavior relationships.

(legend continued on next page)
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distribution of the entire population, indicating that this subpop-

ulationwas not a special set of highly selective neurons across all

time points (Figure 3E).

We also examined whether the neurons with selective activity

for one trial type switched to having a preference for the other

trial type (Figures 3F–3H). Themost selective cells often lost their

selectivity or gained additional selectivity, at other points in the

maze, for the other trial type (Figures 3F and 3G). The trial type

preferences of the neurons with the strongest selectivity on a

given day approached that of the entire population over days

(Figure 3H). Only a small fraction of neurons switched from

having significantly higher activity on one trial type to having

significantly higher activity on the opposite trial type (4.7% ±

1.7% of cells; lower bound for chance: 1.4% ± 0.7% based on

switches within a day using a held-out set; upper bound for

chance: 45%–50% based on switches in selectivity when cell

IDswere shuffled across days). Switches in trial type preferences

were thus rare from one day to the next, and gains or losses of

selectivity were more common. Together, these results indicate

that trial-type-specific information was encoded by different

populations of neurons over time.

Using a Generalized Linear Model to Compare
Relationships between Neuronal Activity and Behavioral
Features across Days
Although these findings provide evidence for major changes in

neuronal activity patterns, thus far, we considered two aspects

of the task (maze position and trial type) and did not include other

task features that could potentially be represented in the

neuronal activity, such as the mouse’s running or movement of

visual stimuli. We wanted to understand whether behavioral vari-

ability across days could explain the changes in neuronal activity

or whether these changes were due primarily to single neurons

having different relationships between their activity and behavior

across time.

We developed a generalized linear model (GLM) in which we

modeled the activity of an individual neuron based on variables

that described the task and mouse’s behavior: running patterns

of the mouse; virtual maze position (visual scene); trial type;

reward events; andwhether themousewas in the inter-trial inter-

val period (Friedman et al., 2010; Park et al., 2014; Figures S3

and S4). We fit the relationship between a cell’s activity and

these behavior and task features to develop amodel of that cell’s

activity-behavior relationship. We tested the quality of this model

by predicting the cell’s activity using behavioral and task fea-

tures in a subset of trials not used for fitting. Across cells, models

explained a large fraction of neuronal activity (57.9% ± 2.6% of

cells had significant fits measured as the explained deviance in
(G) Left: for example cells from (F), fitting and testing comparisons as in (D). Right:

fitting and test days is shown. Exponential fits are shown.

(H) Histogram of the fraction of significant model predictions after 10–20 days be

(I) Contribution of different categories of behavior features to neuronal activity, est

of cells with the 20%most and 20% least consistent models is shown: position/cu

interval, p = 0.79; t test. Error bars: mean ± SEM. n = 5 mice. Gray lines, 95% co

(J) For a given day, how many previous days the model of that day’s activity p

predictions on R2 consecutive previous days were more likely to provide a goo

previous day. *p < 0.05; t test.

See also Figures S3–S6.
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the neuronal activity compared to a null model; Figure S5). The

distribution of model prediction performance across the popula-

tion was consistent over weeks (Figure S5D).

We used these models to compare the relationship between a

cell’s activity and behavioral features across days. Using the

model of a cell’s activity-behavior relationship fit on a single

day, we predicted the cell’s activity based on behavior features

in other days (Figures 4A and 4B). If the model from one day pre-

dicted activity on a subsequent day, we concluded that a consis-

tent activity-behavior relationship existed. In contrast, if a model

from one day failed to predict the activity on subsequent days,

then we concluded that a consistent activity-behavior relation-

ship was absent. Behavioral features were variable across trials

but maintained a similar distribution and range on each day, sug-

gesting that models could be transferable across days (Fig-

ure S6). We limited effects due to fitting procedures, such as reg-

ularization, and due to correlated task variables by fitting and

testing bi-directionally for each pair of days (STAR Methods).

Changing Activity-Behavior Relationships in Single
Neurons over Days
Models of activity-behavior relationships developed on a given

day, on average, predicted activity patterns well both within

the same session and on neighboring days. However, these

models did a poor job of predicting activity patterns as the

time between the compared days increased (Figure 4C). Over

long intervals, model predictions reached that of a null model,

indicating that single-cell activity-behavior relationships were

generally inconsistent over weeks (Figure 4C). We also quanti-

fied the similarity of models for a given cell across days using

Kendall rank correlations of model parameters and found a com-

parable decay over time (Figure S5F). The changes in these ac-

tivity-behavior relationships were made up of cells that lost well-

modeled relationships, gained well-modeled relationships, and

switched relationships across days. To quantify the prevalence

of these events, we used a statistical threshold, based on shuf-

fled data, to binarize model performance into predictions of ac-

tivity above chance levels and predictions that we could not

identify as significant (STAR Methods). We then compared pairs

of models fit on separate days for a given cell. If the models

developed on one day provided good predictions of the activity

patterns on the other day, the cell was considered to have a

consistent activity-behavior relationship (Figure 4D). Instead, if

onemodel with a significant prediction of activity could be devel-

oped for one day’s activity, but not for the other day’s activity,

the cell was considered to have lost or gained an activity-

behavior relationship (Figure 4D). If models with significant pre-

dictions could be developed on both days but these models
fraction of models with significant predictions as a function of time between the

tween fitting and training days for cells identified on R15 days. n = 690 cells.

imated as the SD of the linear part of the model (STARMethods). Comparisons

e, p = 0.026; treadmill velocity, p = 0.98; whether themousewas in the inter-trial

nfidence intervals for randomly selected cells.

rovided a good prediction of previous days’ activity. Models with significant

d prediction in future days than models with significant predictions on only 1



provided poor predictions of activity on the other day, the cell

was considered to have switched activity-behavior relationships

(Figure 4D). Although these categories were not perfect descrip-

tors due to statistical thresholds, they provided an overview of

the changes that occurred. The likelihood that a cell lacking an

activity-behavior relationship gained such a relationship re-

mained constant over weeks (Figure 4E). Within a session, be-

tween the first and second half of trials, changes in activity-

behavior relationships were small but statistically significant

(p < 10�3 versus changes in interspersed trials; Figure 4E). As

the interval between the compared days increased, the likeli-

hood that a cell had a consistent relationship decreased and

the likelihood that a cell lost or switched a relationship increased

(Figure 4E). After �20 days, a cell with a well-described activity-

behavior relationship was more likely to have lost or switched

this relationship than to have maintained it (Figure 4E).

The rate of changes in activity-behavior relationships varied

greatly across neurons (Figure 4F). For each neuron, we calcu-

lated the likelihood that a model developed on one day provided

a significant prediction of another day’s activity (Figure 4G, left)

and fit an exponential to this likelihood over time to define a

metric of consistency for each cell (Figure 4G, right). Some neu-

rons had slow decays and thus relatively consistent activity-

behavior relationships, whereas others had fast decays indica-

tive of rapid changes. Over a 20-day interval, the large majority

of neurons had a low likelihood of consistent models (Figure 4H).

Only �7% of neurons had consistent activity-behavior relation-

ships over the entire interval (defined as >95%significant predic-

tions after 10–20 days).

To understand whether the neurons with the most and least

consistent activity-behavior relationships represented different

types of behavioral information, we examined the contribution

of various parameters to each cell’s activity (the extent to which

the behavioral parameter of interest modulated a given cell’s

model prediction). Cells with the most and least consistent rela-

tionships had a distribution of contributions for trial type, maze

position, running pattern, and inter-trial interval times that over-

lappedwith the distribution in the full population (Figure 4I). How-

ever, neurons with the least consistent relationships more often

had greater contributions from trial type and maze position than

neurons with the most consistent relationships, suggesting that

activity related to learned task features may have less consis-

tency across time (Figure 4I).

The changes in activity-behavior relationships were not inde-

pendent across days. Rather, consistent relationships in the

recent past predicted consistent relationships in the near future.

Neurons with a consistent activity-behavior relationship for 2 or

more consecutive daysweremore likely tomaintain that relation-

ship than neurons with a consistent relationship for only 1 of the

immediately preceding days (Figure 4J). Neurons therefore

potentially operated with modes of activity that tended to persist

for neighboring days (Figure S5G).

The GLM analyses suggest that the changes in activity were

likely due to unstable activity-behavior relationships rather than

changes in behavioral patterns across days. We supported this

finding by comparing the similarity of population activity patterns

on trials with the most or least similar behavioral patterns across

all days. Population activity was more similar on trials with more
similar behavioral features, measured as correlations between

population activity vectors (Figure S6D). However, the difference

in activity between the most and least similar behavioral trials

was small compared to the population activity changes across

time (Figure S6D). In addition, mice did not appear to forget

and re-learn the task each day. Performance was near perfect

on the first few trials of each day (Figures 1B and S6E).

Consistent Statistical Features of Population Activity on
Each Day
Despite changes in the activity of individual neurons, we noticed

consistent patterns in the population activity on each day.

Neuronal activity that tiled the trial was present on each day

and was made up of different neurons across days (Figure 2A).

The distribution of population activity across the trial was not uni-

form, but this distribution was similar across all days in a given

population of neurons (Figures 5A and 5B). In addition, on each

day, a decoder for trial type based on population activity

achieved similar levels of performance and had similar distribu-

tions of performance across time points in the trial (Figures 5C

and 5D). Interestingly, in each population of neurons from

different mice, differences between mice were maintained

across days. For example, the population of neurons in one

mouse (red) had higher decoding accuracy of trial type than in

another mouse (green) across all days (Figure 5D). Other proper-

ties of population activity had similar distributions on each day,

including for neuron-neuron activity correlations, trial-trial popu-

lation activity correlations, estimated population firing rates, and

decoding accuracy of trial type for individual neurons (Figures

5E–5L). Therefore, the population appeared to have a ‘‘set point’’

of similar activity each day, using different neurons and neurons

in different ways.

Decoding of Information from Dynamic Neuronal
Representations
The changes in neuronal activity-behavior relationships raise

questions about how information could be read out from a dy-

namic neuronal population. The cells with the most consistent

activity-behavior relationships could preferentially carry informa-

tion for the readout. Alternatively, cells with less consistent activ-

ity-behavior relationships could contribute to decoding of infor-

mation over time. We tested various decoding strategies for

reading out the trial type on the basis of population activity.

We first trained and tested a linear decoder on each day sepa-

rately using all neurons. Trial type information could be decoded

throughout the trial, with higher decoding accuracies at the end

of the trial, when the mouse executed a turn at the T-intersection

(Figure 6A). We compared the decoding performance using the

cells with the most or least consistent activity-behavior relation-

ships (from Figure 4G; STAR Methods). The cells with the

least consistent relationships had better decoding accuracy

throughout the majority of the trial (Figure 6B).

To analyze the stability of information in population-activity

patterns, we tested decoding performance across days. We

trained a decoder on a given day and tested it on subsequent

days (Figure 6C). For a random subset of cells, decoding perfor-

mance decreased as the interval between compared days

increased (Figure 6C). Decoding performance scaled with the
Cell 170, 986–999, August 24, 2017 993



A C

B

E G I K

D F H J L

Figure 5. Stable Statistical Features of Population Activity

(A) For two example mice, mean population activity versus maze position.

(B) Ratio of activity in the cue period to the delay period.

(C) For two example mice, population-decoding accuracy of trial type versus maze position. Separate decoders were trained at each spatial bin and on each day.

(D) Population-decoding accuracy of trial type.

(E) For two example mice, distributions of cell-cell correlations of deconvolved calcium signals smoothed with a 2-s sliding window.

(F) Summary of cell-cell correlation distributions. Boxes, 25th and 75th percentiles; white dots, mean; whiskers, 99% range.

(G–L) Same as in (E)–(F), except for correlations of population activity (cells 3 maze position) in trials of the same type (G and H), population activity event rates

(I and J), and classification accuracy of trial type based on single-cell activity (K and L).
size of the neuronal population considered (Figure 6D). In the

cells with themost consistent activity-behavior relationships, de-

coding performance was low for the majority of the trial, until the

final segment, in which decoding performance was high and

consistent over days (Figure 6C). As expected, the performance

of a decoder trained on one day and tested on other days

decreased with time for the cells with the least consistent activ-

ity-behavior relationships (Figure 6C). Interestingly, however,

over intervals within 1 week, these cells performed better in the

majority of the trial than the cells with the most consistent rela-

tionships (Figure 6C, left and middle). Therefore, information in

the population was not stable over time, but some information

remained for days and weeks, even in populations of neurons

with the least consistent activity patterns. For the binary classifi-

cation of trial type over the intervals examined, a stable readout

could suffice for above chance performance, but, to achieve

higher performance, a readout that changes dynamically with

the encoding network would likely be necessary.

If the relevant information for the task is read out when the

mouse executes a turn, then it might be beneficial to weight

strongly the cells with the most consistent activity-behavior rela-

tionships. In contrast, if information in the T-stem is more rele-

vant for behavior, then weighting the cells with the less consis-

tent relationships might be beneficial. Based on this reasoning,

we returned to our optogenetic inactivation experiments and in-

hibited PPC activity either during the first half or the second half
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of the trial. Inhibiting PPC activity in the first half of the trial greatly

impaired the mouse’s performance, but silencing PPC activity in

the second half of the trial had no significant effect (Figure S7). It

is thus possible that weighting the information in cells with the

least consistent activity-behavior relationships would be useful

for PPC’s role in this task.

Incorporation of Representations for Newly Learned
Associations into Existing Population Activity Patterns
Computational models suggest that an advantage of dynamic

neuronal representations could be the flexibility of incorporating

new information into the population (Ajemian et al., 2013; Rokni

et al., 2007). We tested how existing representations were

affected by the learning of a new association. We trained the

same mice that had stably performed the task described above

to learn a new association. We introduced a third possible cue (X

pattern) that required a specific turn at the intersection for a

reward (the turn direction was randomly selected for each

mouse; Figure 7A). After a mouse learned the novel third trial

type, we introduced a fourth cue (triangle pattern) with the oppo-

site turn association (Figure 7A). Mice learned the novel cue-

response associations while maintaining high performance for

the familiar two-cue-response associations (Figure 7B).

We first asked whether the neuronal activity patterns were

different between trials in which the mouse saw the novel cues

or the familiar cues. The novel trial types could be distinguished
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Figure 6. Decoding Task Information across Days

(A) Population-decoding accuracy of trial type on correct trials as a function of position in the maze. Separate decoders were trained at each spatial bin and on

each day. Shading: mean ± SEM. n = 5 mice. Dashed line indicates chance.

(B) Decoding accuracy of trial type on correct trials using 20 cells with the least (yellow) or most (purple) consistent activity-behavior relationships or 20 randomly

selected cells (gray). Error bars: mean ± SEM. n = 5mice. *p < 0.05; t test; between least and most consistent groups. See Figure S7 for inactivation experiments.

(C) Decoders trained on a given session and tested on a later session using 20 cells. Error bars: mean ±SEM. n = 5, 5, 4, 4, and 2mice forDdays 0, 2, 5, 10, and 20,

respectively. *p < 0.05; t test; between least and most consistent groups.

(D) Decoders trained on a given session and tested on a later session using 30, 50, or 100 randomly selected cells. Decoding performance versus number of

neurons used for decoding: p < 10�3; ANOVA.

See also Figure S7.
with a linear population decoder from the familiar trial types dur-

ing the cue and delay period, even for trials with the same turn

direction (Figure 7C). However, during the turn period, the novel

trial type was only distinguishable from trials with opposite

behavioral choices (Figure 7C). The relationship between popu-

lation activity between trial types could be visualized on a single

day in a dimensionality-reduced space (Figure 7D). These results

indicate that a distinct representation of the new trial types was

present, except during the turn period in which activity followed

the turn direction.

We tested whether the new learned associations altered the

rate at which neuronal activity patterns changed during perfor-
mance of previously learned trial types. We might expect

learning to increase the rate of change as new information is

incorporated. In agreement with this idea, we found that the

rate of change within a session increased with the introduction

of a novel trial type (Figure 7E). In contrast, we found that the

rate of change across days was comparable between the days

with two familiar trial types and during learning of the novel trial

types (Figure 7F). New trial types therefore appeared to cause

a small increase in the rate of change over short timescales

but did not significantly alter the overall rate of drift over days.

The similar rate of change over days before and after the

introduction of new trial types could have occurred if the cells
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Figure 7. Neuronal Activity during Learning of a Novel Trial Type

(A) Mouse perspective of virtual maze trial types.

(B) Behavioral performance on 2 days preceding and 4 days following introduction of a novel trial type. Error bars: mean ± SEM. n = 4 (2 mice with 2 novel trial

types each).

(C) Population decoding performance of different trial types during the cue, delay, and turn periods. Error bars: mean ± SEM; n = 2 mice.

(D) Example population activity during cue, delay, and turn periods in the same dimensionality reduced space (one mouse, four trial types). Dots, single trials.

(E) Fraction of cells with consistent (black), lost (medium gray), and switched (light gray) activity-behavior relationships within one session based on our GLM

analysis on days with only familiar trials or with novel trial types. Dots, single sessions. First/second half, consistent: p < 10�3; lose: p < 10�3; t test.

(F) For models fit to activity-behavior relationships on one day, deviance explained of predictions of activity on other days. p = 0.91; ANOVA; comparing linear

regression slopes for two-trial-type and novel-trial-type days.

(G) Left: for individual cells, novel cue-related activity on day n (measured by >0 contribution for novel cue onset/offset in the GLM) versus familiar cue-related

activity on day n–20. Right: for the same cells, novel cue-related activity on day n versus familiar cue-related activity on day n is shown.

(H) For cells with novel cue-related activity on day n, the fraction of cells with activity related to either white or black cue onset/offset on the same day (day n) and

on previous days. n = 4 circles (2 mice with 2 novel trial types each); bars, means; shading, 95% confidence interval from a random subset of neurons.
with activity related to the novel trials were different from the

cells with activity related to familiar trial types. Surprisingly,

cells with activity related to novel cues were more likely to

come from the group of cells that recently (within the past

10 days) had activity related to the familiar cues than from a

random sample of neurons (Figures 7G and 7H). The evolving

pool of cells involved in representing task features was thus

more likely to incorporate new task-relevant information than

the group of cells presently without task-relevant information.

This finding suggests that new information can be incorpo-

rated into the pool of cells with task-relevant activity as this

pool continuously shifts over time, without disrupting baseline

functionality. We speculate that the network’s ongoing

changes provide a framework for the addition of new associa-

tions using ‘‘multitasking’’ neurons that allow for flexibility

during learning.
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DISCUSSION

Our results differ from studies in sensory and motor regions that

reported no changes or subtle shifts in activity (Margolis et al.,

2012; Peron et al., 2015; Peters et al., 2014). We report changes

similar to those in hippocampus (Ziv et al., 2013). The rate of

change in neuronal representations may vary depending on the

function of the population of neurons. In areas closely connected

to sensory coding or the generation of motor actions, there may

be a greater need for stability. In contrast, association regions

require flexibility for learned behaviors as one of their key prop-

erties, in which case,malleable activity patterns would be advan-

tageous. Thus, the changes we observed may not be general to

cortex but rather a specific property of association areas.

Consistent with these ideas, dendritic spines turn over at a higher

rate in hippocampus than in primary somatosensory cortex



(Attardo et al., 2015). It will be of interest to directly compare the

rates of activity changes in populations of neurons in different

brain regions to test whether abstract learned representations

drift at faster rates than activity patterns that represent sensory

stimuli or generate motor actions.

Dynamic representations were likely used to perform the

task. Inactivation of cue period activity centered at PPC re-

sulted in a decrease in behavioral performance. It seems un-

likely that PPC was essential for visual perception alone given

that our previous work found little evidence of strong responses

in PPC during passive viewing and showed PPC was not

required for a simple visually guided task (Harvey et al., 2012).

Also, because PPC activity was not required during the delay

period, it seems unlikely that PPC had an essential short-term

memory of the cue or upcoming action. Collectively, the results

here and from previous work support the hypothesis that PPC

functions in the visual-to-motor transformation (Goard et al.,

2016; Harvey et al., 2012; Licata et al., 2017; Raposo et al.,

2014). This hypothesis is consistent with PPC’s connectivity in

which it receives multisensory input, has recurrent connections

with frontal regions, and has outputs to motor-related struc-

tures (Harvey et al., 2012).

Our work reveals a strategy for PPC neurons to achieve sta-

bility of learned associations while allowing flexibility to incor-

porate new information. We illustrate this idea by focusing on

the binary classification of trial type. Over weeks, individual

neurons did not maintain different activity between trial types.

Many neurons gained or lost selectivity, and a small fraction

of neurons switched trial type preferences. Despite these

changes, information about trial type could be read out at

above chance levels from the population using a stable

decoder. The decoder worked because the majority of neu-

rons lost or gained selectivity but did not switch from one trial

type to the other. Many changes therefore occurred in a

mostly null dimension relative to the dimension important for

decoding trial type (Ajemian et al., 2013; Rokni et al., 2007).

These changes need not be coordinated in an ‘‘intelligent’’ or

‘‘structured’’ way to occur specifically in a null dimension.

Rather, this effect is characteristic of a high-dimensional activ-

ity space, in which most dimensions are orthogonal to each

other. However, more information would be accessible to the

readout if it functioned as a dynamically adaptive decoder.

Over long timescales, an ideal decoder could slowly drift in

response to the dynamically encoded information but could

change at a slow pace or with a lag given that drastic changes

in the encoding network did not occur from one day to the

next. Learned associations that are not practiced could be

lost if the readout is not updated for an extended interval,

whereas learned associations that are often practiced could

maintain a tight link between drifting activity patterns and

the relevant readout. Slow drifts in activity have been shown

to provide computational advantages, such as avoiding local

minima and providing exploratory information for reinforce-

ment learning (Kappel et al., 2015).

Our work provides evidence that individual PPC neurons do

not have specified roles in network activity. Not only did we

observe that neurons lost or gained activity-behavior relation-

ships over time but we also found neurons that switched
their activity-behavior relationships. Neuronal activity was best

described by combinations of behaviorally relevant features

similar to recent work showingmultiplexed information in cortical

neurons (Cromer et al., 2010; Rigotti et al., 2013). Changes in ac-

tivity suggest that a neuron might not be confined to a specific

class of activity pattern (Raposo et al., 2014). Although our de-

coding experiments revealed that information could be read

out even from cells with the least consistent activity-behavior re-

lationships, it will be important to test experimentally which neu-

rons aremost important for behavior. Furthermore, we examined

changes in activity relative to the behavioral and task features we

measured, but it remains possible that PPC activity could have

long-term stability with respect to task, behavior, or internal

parameters that we did not monitor or to which we did not

have access. For these reasons, it will be of interest to repeat

these experiments with different tasks and recording methods.

Together, our work and others suggest that the role of individ-

ual neurons could be less important than the overall population

activity pattern (Yuste, 2015). Consistent with this idea, PPC

population activity had similar statistics on each day, using

different neurons or the same neurons in different ways. This

result suggests that the population activity reached a set point

of activity that was necessary for the PPC’s role in the task.

This finding is conceptually similar to the homeostatic properties

of the stomatogastric ganglion (O’Leary et al., 2014; Prinz et al.,

2004). In that system, the same firing patterns of neurons can be

achieved through different combinations of ion channels and ion

channel expression levels. We speculate that neuronal popula-

tions similarly maintain homeostasis. In this case, features of

population activity remain constant, but the role for individual

neurons is flexible.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

B6.129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory Stock No: 017320 j Black 6

C57BL/6J mice The Jackson Laboratory Stock No: 000664 j Black 6

C57BL/6J-Tg(Thy1-GCaMP6s)GP4.12Dkim/J mice The Jackson Laboratory Stock No: 025776 j Black 6

Bacterial and Virus Strains

AAV1.EF1.dflox.hChR2(H134R)-mCherry.WPRE.hGH UPenn Vector Core Catalog No: AV-1-20297P

AAV1.Syn.Flex.GCaMP6m.WPRE.SV40 UPenn Vector Core Catalog No: PV2823

AAV1.CAG.tdtomato.WPRE.SV40 UPenn Vector Core Catalog No: AV-1-PV2126

Software and Algorithms

MATLAB MathWorks http://www.mathworks.com

glmnet (Friedman et al., 2010) https://CRAN.R-project.org/package=glmnet

Scanimage Vidrio Technologies http://scanimage.vidriotechnologies.com

Calcium imaging deconvolution algorithm (Pnevmatikakis et al., 2016) https://github.com/epnev/constrained-foopsi

ViRMEn (Virtual Reality Mouse Engine) (Aronov and Tank, 2014) https://pni.princeton.edu/pni-software-tools/

virmen-virtual-reality-matlab-engine

Custom MATLAB code for motion correction,

selecting cell regions-of-interest, and extracting

fluorescence timeseries

This paper https://github.com/HarveyLab/Acquisition2P_class
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Chris-

topher Harvey (harvey@hms.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All experimental procedures were approved by the Harvard Medical School Institutional Animal Care and Use Committee and were

performed in compliance with the Guide for the Care and Use of Laboratory Animals. Three male C57BL/6J-Tg(Thy1-GCaMP6s)

GP4.12Dkim/J mice were used for widefield retinotopic mapping experiments, All other data were obtained from five male

C57BL/6J mice (The Jackson Laboratory), which were 8-10 weeks old at the start of behavioral training, and 14-32 weeks old during

imaging. A surgery was performed on each mouse before training to affix a titanium headplate to the skull using dental cement

(Metabond, Parkell). At least one day after headplate implantation, mice began a water schedule, in which they received 800 mL

of water/day. Mouse health wasmonitored daily. Mice were given additional water if their weight fell below 80%of their pre-schedule

weight (mean ± sem 23.2 ± 0.5 g). Mice were housed in pairs of littermates.

METHOD DETAILS

Virtual reality system
Virtual reality environments were constructed and operated using MATLAB-based ViRMEn software (Virtual Reality Mouse Engine)

(Aronov and Tank, 2014; Harvey et al., 2009). A PicoP microprojector (MicroVision Inc.) projected the virtual environment onto

the back side of a 24-inch diameter half cylindrical screen. The virtual environment was updated in response to the mouse’s

manipulations of an open cell Styrofoam spherical treadmill (8-inch diameter, �135 g). An optical sensor positioned beneath the

spherical treadmill measured movements in pitch and roll of the ball (relative to the mouse’s body axis). These signals controlled for-

ward/backward and rotational movement in virtual reality, respectively. We recorded the mouse’s position in the virtual environment

(x/y position), the rotational speed of the spherical treadmill (about the pitch and roll axes), and the mouse’s view angle in the

environment.
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Behavioral training
Mice were on the water schedule for at least five days before behavioral training began. Training sessions were performed daily and

lasted 45-60 min at approximately the same time of day each day. Rewards (4 mL of 10% sweetened condensed milk in water) were

delivered through a lick spout. Mice were trained to perform the T-maze task using a program of five mazes.

2-Cue Task Training

Maze 1 was a linear track in which the mouse had to run forward to get a reward. After each trial the maze was either lengthened or

shortened to maintain an approximate reward rate of 4 rewards/minute. When the mouse completed a trial in less than 15 s, the cen-

tral corridor would grow by 10 cm on the next trial or shrink by the same amount if the trial was completed in greater than 15 s. The

minimum length of the maze was 37.5 cm and the maximum was 3 m (measured as running distance on the treadmill).

In maze 2 themice had to turn toward a tower above the left or right T-arm in the virtual world. This maze trained themice to follow a

visual cue for reward and improved running skill on the treadmill. Again, after each trial the maze was either lengthened or shortened

to maintain an approximate reward rate of 4 rewards/minute with a minimum length of 70 cm and a maximum length of 3.5 m.

In maze 3, mice began to associate colored walls with the cued turn direction. When the tower was on the right, the walls were

black. When the tower was on the left, the walls were white. On alternating trials we added a second tower so that there was one

on each side, and the mouse had to use the wall color to plan the turn direction. Maze 3 was 4 m in length.

The delay periodwas gradually incorporated intomaze 4, such that the cue offset (delay onset) shifted earlier in the trial. The criteria

for advancement to the next maze in the sequence, on mazes 3 and 4, were a trial rate of > 4 trials/minute and > 80% correct for 2-3

consecutive days.

Inmaze 5, the lengths were fixedwith the total length of 4.5m and a delay period of 2.25m. The colored walls were either black with

white dots or white with black dots followed by a gray striped segment throughout the delay period that was identical across trial

types. The entire training program was completed in 4-8 weeks.

3- and 4-Cue Task Training

Training for novel trial type associations was performed during imaging. Mazes were identical to maze 5. On each day, mice were

presented with novel trial types after 40 trials of the familiar trial types (black cue-right turn and white cue-left turn). After novel trial

types were introduced, familiar trial types and novel trial types were interleaved such that there were equal fractions of left and right

turn trials. Mice were first presented with a 3rd cue (crosshatch) and after mice performed all three trial types at above 80% for three

consecutive days, we introduced a 4th cue (triangles). For mouse 1, the 3rd cue instructed left turns and the 4th cue instructed right

turns. For mouse 2, the cue-turn relationship for novel trial types was reversed. White and black cues maintained consistent cue-turn

relationships for both mice. Mice learned novel trial type cue-turn relationships by trial and error while maintaining previously learned

relationships for black and white cues.

Bias Correction

Somemice developed biases during training such that left or right turns were favored. During training, we implemented a bias correc-

tion. On each trial, the probability that amousewould be presentedwith a left turn trial was the fraction of times themouse turned right

on the previous 20 trials. Once mice reached expert levels, biases were rare and bias correction was unnecessary. Bias correction

was not used during imaging sessions.

Optogenetic inactivation experiments
AAV1.EF1.dflox.hChR2(H134R)-mCherry.WPRE.hGH was injected into the left and right PPC (2 mmposterior to bregma and 1.7 mm

lateral of the midline) of 6-8 week old parvalbumin-cre mice (B6.129P2-Pvalbtm1(cre)Arbr/J, stock number 017320, Jackson Labo-

ratory), and the skull was thinned bilaterally over the injection sites. LEDs of wavelength 465 nm (Optek Technology OVS5MBBCR4)

were glued and cemented onto the thinned portion of skull and covered with custom aluminum heat sinks. Training began one week

after the surgery. Inactivation experiments began after the mice learned the final version of the task. In a given session, a subset of

trials (9%–26%) were randomly selected for inactivation. Stimulation occurred either throughout the first half of the T-stem, the sec-

ond half of the T-stem, or throughout the entire T-stem. Onwhole trial inactivations, stimulation occurred from the start of the trial until

themouse either entered a T-arm or until 10 s had elapsed, whichever happened first. Stimulation consisted of 10ms LED light pulses

delivered at 50 Hz (50% duty cycle) with peak power of approximately 4-5 mW/mm2. Sessions in which the mouse performed below

65% correct were excluded from the analysis. The difference between performance on control and inactivation trials was compared

with the performance-difference generated from 1000 trial-label shuffles.

Surgical procedures
After mice achieved performance greater than 80% correct on the task for five consecutive days, they received ad lib access to water

for three days before a cranial window implant surgery. A circular craniotomy with a diameter of 3.1 mm was made over left

PPC (stereotaxic coordinates: 2 mm posterior, 1.7 mm lateral of bregma). Three 10 nL injections of a virus mixture containing

a 4:1 volumetric ratio of tdTomato (AAV2/1-CAG-tdTomato) to GCaMP6m (AAV2/1-synapsin-1-GCaMP6m) (University of Pennsyl-

vania Vector Core Facility) were made near the center of the craniotomy at a depth of �275 mm below the dura. Injections were

slow (5 min/injection) and continuous (custom air pressure injection system). The pipette (15 mm tip diameter) was advanced using

a micromanipulator (Sutter MP285) at a 30-degree angle relative to horizontal to minimize compression of the brain. A glass plug

consisting of a single 5 mm diameter coverslip on top of two 3 mm diameter coverslips (#1 thickness; CS-5R and CS-3R, Warner
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Instruments) were combined using UV-curable optically transparent adhesive (Norland Optics) andwere affixed to the brain withmin-

imal Kwik-Sil (World Precision Instruments) and affixed to the skull using Metabond on the perimeter of the 5 mm coverslip lip. The

metabond mixture contained 5% vol/vol India ink, to prevent light contamination from the visual display. Additionally a titanium ring

was mounted on top of the headplate. This ring interfaced with the microscope’s objective lens through a cylinder of black rubber, to

prevent light contamination. Mice resumed training after at least one day of recovery. Imaging began at least three weeks post-in-

jection and was continued for up to 8 weeks. On a given day, we imaged 100 - 300 neurons simultaneously during approximately 200

trials (Figure S2J).

Field sign maps
To visualize Bregma-guided PPC coordinates relative to the retinotopic map in visual areas of themouse cortex, we performed wide-

field imaging in GCaMP6s transgenic mice (C57BL/6J-Tg(Thy1-GCaMP6s)GP4.12Dkim/J) during a stimulus protocol for retinotopic

mapping.

Widefield microscope design

Retinotopic mapping was performed with a tandem-lens epifluorescence macroscope (Ratzlaff and Grinvald, 1991). Excitation light

(455 nmLED, Thorlabs) was filtered (469 nmwith 35 nmbandwidth, Thorlabs) and reflected onto the brain through an inverted camera

lens (NIKKORAI-S FX 50mm f/1.2, Nikon). Emission light was collected by the same lens, emission-filtered (525 nmwith 39 nmband-

width, Thorlabs), and imaged by a second camera lens (SY85MAE-N 85 mm F1.4, Samyang) onto a CMOS camera (ace acA1920-

155um, Basler). Images were collected at 60 Hz, synchronized to the visual stimulus presented on a gamma-corrected 27 inch IPS

LCD monitor (MG279Q, Asus).

Visual stimulus design

Stimulus presentation was performed as described in (Marshel et al., 2011). The monitor was placed in front of the right eye at an

angle of 30 degrees from the mouse’s midline. The stimulus was a black and white checkered moving bar on a gray background,

corrected to have constant width (5 degrees) and speed (7 deg/s) in spherical coordinates centered on the mouse’s eye (Marshel

et al., 2011). The stimulus was presented in blocks containing six repeats of each of four movement directions (up, down, forward,

backward). Six blocks were presented per session.

Retinotopy analysis design

Retinotopy was determined by computing the temporal Fourier transform at each pixel and extracting the phase at the frequency of

stimulus presentation. The phase images were averaged across all trials of the same orientation and smoothed using a Gaussian

kernel with standard deviation 30 mm to obtain horizontal and vertical retinotopic maps. The field sign map was then calculated

as the sine between the gradient angles of the horizontal and vertical retinotopic maps. Field sign mapswere aligned to Allen Institute

field sign maps using control point registration and overlaid with a dorsal map of cortical areas defined by the Allen Mouse Common

Coordinate Framework (Mouse and Coordinate, 2016)

Two-photon imaging
Field-of-view location

The field-of-view was selected near the center of the craniotomy, at the center of the viral injection sites. This location was defined

based on stereotaxic coordinates but, in separate experiments, showed reproducible positioning relative to areas identified by

retinotopic mapping. The imaged fields-of-view are expected to be anterior to visual area AM.

Two-photon microscope design

Data were collected using a custom-built two-photon microscope. A resonant scanning mirror and galvanometric mirror separated

by a scan lens-based relay telescope on the scan head allowed fast scanning. An Olympus 25x 1.05 NA objective lens was mounted

on a piezo collar (Physik Instrumente) that allowed slower axial scanning. An aluminum box housed collection optics to block light

interference from the visual display. Green and red emission light were separated by a dichroic mirror (580 nm long-pass, Semrock)

and bandpass filters (525/50 and 641/75 nm, Semrock) and collected by GaAsP photomultiplier tubes (Hamamastu). A Ti:sapphire

laser (Coherent) delivered excitation light at 920 nm with an average power of �35-70 mW at the sample. The microscope was

controlled by ScanImage (version 4; Vidrio Technologies). The spherical treadmill was mounted on an XYZ translation stage (Dover

Motion) to position the mouse under the objective.

Image acquisition

Four imaging planes were acquired by volumetric scanning at 5.3 Hz with a resolution of 5123 512 pixels (500 mmx 500 mm) for each

plane. Planes were separated by 25 mm axially between 120 and 250 mm below the dura. Imaging was continuous over behavioral

sessions lasting 45 min to 1 hr. Bleaching of GCaMP6m was negligible over this time. Approximately every 20 min, slow drifts of the

field of view were manually corrected using comparison to a reference image. The imaging frame clock and an iteration counter in

ViRMEn were recorded to synchronize imaging and behavioral data.

Chronic imaging

One field-of-view was acquired for each of the five mice over a period of 3 to 8 weeks. The same plane was identified on consecutive

days using coarse alignment based on superficial blood vessels followed by careful alignment to reference images at various levels of

magnification in the red channel (using tdTomato expression). AAV-mediated expression of GCaMP6m provides high signal-to-noise

compared to other methods; however, viral expression is known to increase over months which can lead to compromised signal over
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time, which is correlated with nuclear localization of the indicator (Chen et al., 2013). For this reason, imaging was discontinued when

fields-of-view contained several cells with GCaMP6 in the nucleus, and all cells with nuclear localization were excluded from analysis

(Figure S2I). These methods are in accordance with other long-term imaging studies (Huber et al., 2012). Event rates of all analyzed

cells were stable across time along with other properties of the population activity (Figure 5). Moreover, our ability to model and pre-

dict neuronal activity using behavioral features remained consistent throughout the duration of this experiment. For these reasons we

have no reason to believe cell health was an issue in this work.

Pre-processing of imaging data
Within-session processing

We developed an approach to identify cell bodies in calcium imaging data that combines automated proposals based on image time

series statistics with human supervision to provide an efficient but transparent signal extraction procedure. The approach was im-

plemented as part of a custom MATLAB software pipeline for motion correction, definition of putative cell bodies, and extraction of

fluorescence traces (https://github.com/HarveyLab/Acquisition2P_class). We chose to develop custom scripts for this pipeline

because activity-based methods for ROI segmentation were not available at the time of our experiments.

Following motion correction using the Lucas-Kanade method (Greenberg and Kerr, 2009), candidate locations containing putative

cell bodies were selected manually in the mean intensity image of the acquisition (Figure S2A). Fluorescence sources within a square

neighborhood (60 mm edge width) around the selected location were then identified automatically based on the correlation structure

of the pixel time series. Since the fluorescence time series of pixels belonging to the same source are expected to be highly corre-

lated, sources larger than a single pixel appear in the pairwise pixel time series correlationmatrix as clusters with strongwithin-cluster

and weaker across-cluster correlation (Figure S2B). Formally, the correlation matrix was considered to represent a weighted undi-

rected graph with one vertex per pixel, connected by edges with weights given by the correlation between the fluorescence time se-

ries of the pixels at either end. The optimal segmentation of the graph was then found using an eigenvector-based approximation of

the normalized cuts criterion, followed by k-means clustering to obtain a binary mask for each source (Figures S2C and S2D). This

criterionmaximizes the fraction of within-segment weights (correlations) over total weights. Using segmentations based on pixel time

series correlations prevents the segmentation of inactive cells, even when these cells were visible in the mean image. Fluorescence

time series were computed by averaging across all pixels within the binary mask.

These source proposals were manually classified into cell bodies, non-cell sources (excluded from further analysis), and back-

ground (neuropil), based on their appearance in the mean intensity image and their fluorescence time series (Figures S2A and

S2D). Each putative cell was paired with a background source from the same 60 mm neighborhood. Neuropil contamination was

removed from the cell fluorescence time series by subtracting the associated background time series, scaled by a contamination

factor. The contamination factor was calculated by regressing the cell fluorescence against the background time series using an iter-

atively re-weighted least-squares algorithm (robustfit in MATLAB) that discounts large deviations from the fitted linear relationship,

such as fluorescence transients in the cell (Figures S2E and S2F).

Segmentation and neuropil subtraction were manually verified for each putative cell and adjusted when necessary using a graph-

ical user interface that showed the mean intensity image, current segmentation results, and both raw and background-subtracted

fluorescence time series. Manual adjustments of the segmentation were usually made to obtain clean background fluorescence

traces absent of distinct sources. Manual adjustments of neuropil subtraction were used to correct for an overestimation bias of

the re-weighting procedure when a cell’s activity was highly correlated with the neuropil. In such cases, subtraction was adjusted

to the highest level that did not result in visually apparent negative-going transients in the neuropil-subtracted trace.

The event rate was estimated using a previously described deconvolution algorithm (Pnevmatikakis et al., 2016) to minimize the

impact of indicator kinetics. This method estimates the relative firing rate of each neuron over time but cannot be used to confidently

identify single spikes. We therefore refer to deconvolved traces as an estimated event rate.

Across-session processing

Binarymasks for all fluorescence sources were identified on each day separately and then aligned across days. The algorithm ranked

cells across imaging days with their most likely matches based on proximity after alignment and anatomical image correlation (a

60 mm box around the centroid of the cell). Matches were then verified by eye. This method has advantages over other commonly

used approaches. Other approaches often use a single map of ROI masks for all days, such that this map is transformed on each

day to best fit that day’s imaging alignment. Slight deviations in the axial plane of the image or other sources of in-plane distortion

could lead to slight offsets in masks from day-to-day relative to the ideal alignment. Such slight offsets could result in contamination

from activity in other cells, dendrites, and axons. Our approach identifies signal sources on each day and thus avoids any potential

contamination from other signal sources. We then align the signal sources identified on each day to those from other days. The only

error that could result is in incorrectly calling two signal sources as the same across days. However, to prevent such errors we visually

compared the anatomical images to make sure the signal sources appeared to correspond to the same cell. If a cell could not be

confidently identified on a given day, the data were excluded on that day. As a result, our approach resulted in an incomplete

map of all cells across all days. We note that cells had to have some activity (calcium transients) in order to be identified on a given

day. This activity requirement for the identification of each cell could potentially result in an underestimation in the extent to which

cells gain and lose task related activity. Cells weremore likely to have a definedmask on days that were nearby in time due to variable

activity and viral expression of the indicator GCaMP6m (Figure S2).
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Data inclusion criteria
To include data from a population of neurons in a given mouse, behavioral performance had to exceed 70% correct for greater than

20 consecutive days to ensure that the mouse had learned the task. All imaging sessions were included between the first day with

qualitatively bright GCaMP6m expression and the first day in which nuclear localization of GCaMP6m was present in more than a

few cells.

No statistical methods were used to predetermine sample size. The experiments were not randomized, and the investigators were

not blinded to allocation during any stage of the study. Data groups for randomization and blinding were not present in our study.

Replication of results was not performed.

QUANTIFICATION AND STATISTICAL ANALYSES

For analyses of behavior, n refers to the number of mice studied, which is typically n = 5mice. For comparisons of population activity,

n refers to the number of simultaneously imaged neuronal populations studied. One simultaneously imaged neuronal population was

studied per mouse. Typically n = 5 neuronal populations for these comparisons. For analyses of single cells, n refers to the number of

cells and varied depending on the analysis, such as the interval between days being compared. n values are reported in figure

legends and can also be seen in Figures S2J and S2K.

Statistical analyses are described in the Results, figure legends, and below in this section. In general, 95% confidence intervals

were used to define significance. Most statistical analyses used standard parametric approaches, such as t tests and ANOVA.

When assumptions of these parametric approaches likely would not be met, such as assumptions about the distribution of the

data, we used non-parametric permutation tests. Quantitative approaches were not used to determine if the data met the assump-

tions of the parametric tests.

General analysis procedures
For visualization of mean and single trial activity, activity was spatially binned into 66 segments (60 in the stem and 6 in the arms)

followed by �2 s (10 imaging frames) during the inter-trial interval. Spatially binned segments typically contained 1 imaging frame

each per trial. Data were interpolated to fill in gaps in which a bin contained no imaging frames on a trial. These analyses were

only used for fine-resolution measurements of locations of peak activity. For the majority of the analyses (all except Figure 2), we

binned the data into larger segments (21 segments, 23 cm/bin). Neuronal activity and behavioral parameters were averaged in

each bin in this case. Each bin typically contained 2-3 frames/trial. Unless otherwise noted, all analyses were performed on correct

trials only. Correlation coefficients were calculated from Pearson’s correlations unless otherwise noted.

Identification of significant peaks of activity
Here we used 60 spatial bins during the T-stem rather than 21 spatial bins because wewere interested in achieving greater resolution

of spatial reorganization. Mean activity across 60 spatial bins were calculated for correct white cue-left turn and black cue-right turn

trials. To identify statistically significant peaks of activity, behavior data time courses were circle-shifted by a random amount relative

to neuronal activity time courses, and newmeans were calculated for 1000 random shifts. All locations where the mean activity in the

unshifted data was greater than activity in 950 shuffles for three consecutive bins were considered to contain a significant peak of

activity. For all analyses where peaks were compared across days, we tracked peaks that were labeled with high confidence

(unshifted data was greater than activity in 990 shuffles for three consecutive bins). Peaks were labeled as ‘gained’ or ‘lost’ if in

the absent session, there was below 95% significance for a peak at that location. We found this gap between thresholds for the pres-

ence or absence of a peak to be important for limiting measurement noise. By these criteria for change, we found peak consistency

across odd and even trials within one session to be 83.2 ± 2.1%.

GLM encoding model
On each day separately, we fit a Poisson Generalized Linear Model (Friedman et al., 2010) to the estimated event rates of each cell

based on measured behavioral and task variables. While our estimated event rates were not necessarily Poisson distributed, mean

responses scaled with the variance and rates were larger than zero, suggesting that the Poisson model was appropriate for our data.

Model parameters

All measured behavioral and task-related variables were temporally averaged into bins tomatch the sampling rate of imaging frames.

Variables include x and y position in the virtual world, running speed on the pitch and roll axes of the spherical treadmill, visual cue

onset and offset locations, reward delivery events and trial end (Figure S4). Variables provided input for basis functions that were

distributed either in space or in time to produce 144 predictors in total. The maze was divided into 36 spatial boxcar filters and

convolved with a Gaussian filter separately for right and left turn trials to make the first 72 filters. The onset of each visual cue contrib-

uted 4 basis functions (16 in total for all four cues) that spanned the first 2 s of the trial. For cue offset (delay period onset), 2 basis

functions extended for 1 s preceding cue offset, and 4 basis functions extended for 2 s following cue offset (24 in total for all four

cues). Running speed signals were extended 1 s forward and backward in time for translational and clockwise and counterclockwise

rotational motion (4 filters forward and 4 filters backward for each of 3 speed signals for a total of 24 filters) to model predictive and
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responsive signals. Trial-end and reward events each contributed 4 basis functions that extended for 2 s forward in time (8 filters

total). All temporal filters spanned 1 s, overlapping and evenly distributed within each set.

Fitting

We used the glmnet package in R to fit GLMs. Each day was divided into 10 evenly distributed chunks (first tenth of session, second

tenth of session, and so on) and then sub-divided into 11 numbered pieces within each chunk. All pieces with the same number were

then combined into groups 1-11. This resulted in 11 groups that contained data that was evenly distributed across the imaging ses-

sion (Figure S3). Eight of these groups were randomly chosen and used as cross validation folds during fitting, and the other three

groups were combined and used to test model predictions (8 groups made up 73% fitting and 3 groups made up 27% testing pre-

dictions). For some figures, we compare models that were trained on a subset of data from a single session. First we divided data

from a single session into halves, either interspersed chunks throughout the duration of the session or simply the first and second half

of the session. We then treated these halves as independent sessions that were divided as we previously describe (73% fitting and

27% testing predictions). These models were only used for comparison to the appropriate opposite half within a single session. Pa-

rameters were fitted for each cell separately with elastic net regularization consisting of 10% L2 and 90% L1 methods. Model fitting

was conducted on the Orchestra High Performance Compute Cluster at Harvard Medical School. This shared facility is partially sup-

ported by NIH through grant NCRR 1S10RR028832-01.

Analysis of model

Deviance explained was used as the metric of model fit. It was calculated by comparing the activity predicted by the model to the

actual activity, based on the average real and predicted activity levels on white cue-left and black cue-right turn trials. Deviance ex-

plained was calculated based only on data not included in the fitting procedure. It was compared to a null model in which the pre-

dicted event rate was 1 (the normalizedmean rate of the entire fitting set). We also computed deviance explained using predictions of

the full time series of activity for single frames. In this case, the distribution of fits was similar, except lower than for trial-averaged

data, as expected. To determine whether a model prediction described test data significantly above chance, we compared the devi-

ance explained to the distribution of deviance explained for models in which, before model fitting, the time series of neuronal activity

was circle-shifted relative to the time series of behavior data.We found the upper limit of deviance explained inmodels that were fit on

shuffled data to be 0.2 (for trial-averaged activity). Therefore, we determinedmodels with greater than 0.2 deviance explained on test

data to have predictions significantly above chance performance. Cells with activity that could not be significantly predicted by our

models could still have behaviorally relevant activity patterns that were simply not described by our set of filters. Therefore, when we

refer to cells having gained or lost activity-behavior relationships, we refer specifically to the set of relationships included in our

models.

By comparing model fits between any two days or between subsets of data from a single day, we could determine whether a given

neuron’s activity-behavior relationship was consistent over time, gained or lost a relationship to a behavioral feature, or switched

from encoding a particular set of behavioral features to encoding another. If models with significant predictions could be fit on

each individual day’s data for a given pair of days and if the models also provided significant predictions of the other day’s activity,

then we called the activity-behavior relationship consistent. If models with significant fits could be fit on each individual day’s data for

a given pair of days and if the models did not provide significant predictions on the other day, we determined a switch in activity-

behavior relationship had occurred. If only one day had a model that could predict the neuron’s activity significantly well, then we

concluded that a gain or a loss of activity-behavior relationship had occurred. This approach works well when behavioral variables

are not highly correlated. However, if behavioral variables are very highly correlated, then it is difficult for the model to determine to

which variable weight should be attributed. If variables were highly correlated on one day but not correlated in another day, then

incorrect assignments of switches in activity-behavior relationships could emerge. To be conservative and to account for any poten-

tial cases in which non-modeled variables were highly correlated with modeled variables (on some days but not others), we did not

require symmetry in model performance across days for an activity-behavior relationship to be considered consistent. That is, if a

model prediction on day i and day j both had significant predictions of activity and if the model from day i predicted well the activity

from day j, but not vice versa, then a consistent activity-behavior relationship would still be considered to be present. In this case, if

behavior variables x and ywere highly correlated on day j but not on day i, then the model on day jmight incorrectly attribute weights

on day j leading to a poor prediction on day i. However, because the variables x and y were not highly correlated on day i, then the

model would correctly attribute weights on day i, successfully predicting activity on day j despite having correlated variables x and y

on day j. This method would still fail to identify a consistent activity-behavior relationship if the ‘real’ encoded feature (for example,

mental state) was correlated with different filters in the model on each day. These subtle behavioral confounds are difficult to remove

completely and should be considered in the interpretation of this work and most other behavioral studies. Through the use of virtual

reality we could control the sensory environment and track behavioral metrics with great precision, incorporating these features into

our models and thus minimizing the aforementioned concerns.

Metric of consistency in activity-behavior relationships

We defined the consistency of activity-behavior relationships for each cell by the likelihood that an encoding model fit on a

given day continued to provide significant predictions of the cell’s activity for days and weeks. We found the fraction of models

that provided a significant prediction of a given cell’s activity over each interval between fitting and prediction sets (1-30 days).

We then fit an exponential decay, weighting each point by the number of model comparisons available (for example, there were

more model comparisons where D days = 1 than D days = 30). We only included cells that had significant fits on at least half of
Cell 170, 986–999.e1–e7, August 24, 2017 e6



days where D days = 0 because cells with a low starting point necessarily had slow decays because the fraction of significant model

fits was bounded by zero.

Contribution of task and behavioral features to the activity of a cell

To calculate the contribution of each task and behavioral variable to a given model, we computed the standard deviation of the linear

part of the model that was related to the behavioral variable of interest (the standard deviation of beta coefficients crossed with rele-

vant behavioral filters of behavioral data). This provided us with the extent to which a behavioral variable modulated the activity of the

neuron. For filter groupings in position/cue, velocity and ITI contribution calculation see Figure S4.

Additional notes on GLM

A main benefit of the GLM is that it mitigates effects of behavioral variability on neural changes in our analyses. Because the GLM

does not include every possible behavioral variable, it remains possible that behavioral variability that was not modeled could poten-

tially contribute to the neural activity changes we observed. Importantly, however, our analyses using the GLM put an important

constraint on any potential additional behavioral features that could contribute to neural activity changes.Wemodeled a cell’s activity

based only on the measured behavioral features and then only considered changes in activity in cells that had a good model of their

activity based on the behavioral features measured. That means, if a cell was strongly driven by non-modeled behavioral features,

then it is unlikely to have a good model fit and thus unlikely to be included in our analysis. The one exception is if an un-modeled

behavioral feature is highly correlated with a modeled behavioral feature on some sessions but not on other sessions. Therefore,

our GLM analyses are limited not simply because of all un-modeled behavioral features but rather only because of un-modeled

behavioral features that are highly correlated with modeled features. The design of the GLM analyses was thus intended to limit

as best as possible the potential contributions from un-modeled behavioral features.

The GLM approach has the potential to track stable relationships between neuronal activity and behavior features across days that

traditional approaches might miss. For example, if a neuron had activity related to the running patterns of a mouse and if these

running patterns changed relative to maze positions across days, the GLM could reveal a stable activity-behavior relationship

over time that would be missed if only maze position were analyzed.

Decoding
WeusedC-Support Vector Classification with a linear kernel for all decoders. For some decoders, we considered the activity of single

cells (Figures 3 and 5K) across the entire trial. In these cases, the decoder was trained using data from all 21 spatial bins in the trial. In

other cases, in which we wanted to assess the time course of information, we trained decoders on each spatial bin separately using

the activity of all neurons or subsets of neurons (Figures 5A and 6). When decoders incorporated a smaller number of cells (20 cells

each for subgroups in Figure 6) we divided themaze into larger bins to account for the fact that each cell only had trial type information

for a small portion of the trial. For decoding analyses, the data were divided into two-thirds for training/validation and one-third for

testing. The regularization weight hyperparameter C was selected using a random search with 10-fold cross validation on a subset of

training sets across mice. The specific setting of the hyperparameter did not greatly affect the accuracy of our decoders. The same

hyperparameter value (C = 100) was used for all datasets. Significant decoding accuracies in Figure 3 were determined by bootstrap

analysis in which behavioral data were circularly rotated relative to each cell’s neuronal activity. Cells in which real data performed

better than 950 of 1000 shuffles were determined to have significant decoding accuracy. Using this statistical threshold, it is thus

expected that 5% of cells would have significant decoding accuracy by chance.

Dimensionality reduction of neuronal and behavioral data
We reduced the dimensionality of single trial data into a space that captured the most variance across trial types and epochs of the

trial. We performed principal component analysis (PCA) on averaged population responses across these different conditions. We

constructed a data matrix X of size Nneurons 3 Nconditions, in which columns corresponded to spatially binned z-scored population

response vectors for a given segment of the trial (Figure 7). The principal components (PCs) of this data matrix were vectors va of

length Nneurons indexed by the number of PCs. For visualization, we then projected single trial data onto the first 3 PCs.

The motivation for this analysis was to visualize differences in single trial data that corresponded to differences in our conditions of

interest. In Figure 7D we were interested in the evolving population activity throughout the duration of the trial for different trial types

on a single day. Our neuronal data matrix X included 345 neurons identified on a single day and 7 spatial bins evenly spanning the

duration of the trial for all 4 trial types (28 conditions). We projected single trial data onto the first 3 PCs of this matrix from individual

spatial bins 1, 4 and 7 in the cue period, delay period and turn period. This analysis was solely for visualization. All quantified decoding

was performed in the full dimensional space.

DATA AND SOFTWARE AVAILABILITY

Data are available upon request to the Lead Contact. CustomMATLAB code for motion correction, selecting cell regions-of-interest,

and extracting fluorescence timeseries is available on Github at https://github.com/HarveyLab/Acquisition2P_class.
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Supplemental Figures

Figure S1. PPC Coordinates Relative to Retinotopic Maps, Related to Figure 1
(A) Field sign maps for three mice. ‘X’ indicates center of PPC coordinates.

(B) Left: Combined field sign maps overlaid with a dorsal map of cortical areas defined by the Allen Mouse Common Coordinate Framework (Mouse and Co-

ordinate, 2016). Right: Mean field sign maps from 79 experiments (data from Allen Institute for Brain Science).



(legend on next page)



Figure S2. Cell Identification Protocol across Days and Number of Samples for Various Day Comparisons, Related to Figure 1

(A) Fluorescence image of a 60 mm neighborhood of cells.

(B) Correlation matrix between the time series of pixel values within the 60 mm neighborhood.

(C) Segmentation of pixels within 60 mm neighborhood.

(D) Mean fluorescence time series of pixels within each segment.

(E) ROI fluorescence regressed against background fluorescence. The neuropil contamination factor is the slope of the best fit line using bottom 8th percentile of

ROI fluorescence (red).

(F) Top: ROI fluorescence, bottom 8th percentile labeled in red. Middle: Neuropil fluorescence. Bottom: ROI fluorescence with (contamination factor * back-

ground) subtracted.

(G) ROI maps found using protocol in panels A-F from two example imaging days.

(H) Top: Overlay of average fluorescence signal from the example imaging days before and after registration based on intensity of tdTomato expression. Bottom:

ROI outlines found using protocol in panels A-F before and after image registration using the transform from fluorescence image alignment.

(I) Six example cells across days.

(J) Left: Number of cells with goodmatches identified on each imaging day for each mouse. Middle: Cumulative distribution of number of imaging days with good

matches for all cells in each mouse. Right: Probability that a cell was identified with a good match on two days separated by various intervals.

(K) Left: Number ofmice with data on each imaging day. Middle: Number ofmicewith data on two days separated by various intervals. Right: Number of mice with

data for each day comparison.



Figure S3. GLM Fitting Procedure, Related to Figure 4

See figure for details.



Figure S4. Basis Functions for Encoding Model, Related to Figure 4

Trial and behavioral measurements during each imaging frame (left column) were expanded into a set of basis functions that were incorporated into theGLM (right

column). Filter groupings used in contribution calculation for Figure 4I shown in right margin.

(A) Left: Maze position on right turn trials. Right: 36 spatial boxcar filters of position spanning the length of the maze were convolved with a Gaussian filter for right

turn trials.

(B) Left: Black cue onset. Right: 4 Gaussian basis functions that span the first 2 s of black cue-right turn trials.

(C) Left: Black cue offset (delay period onset). Right: 6 total basis functions, 2 basis functions extended for 1 s preceding cue offset and 4 basis functions extended

for 2 s following cue offset.

(D) Left: Maze position on left turn trials. Right: 36 spatial boxcar filters of position spanning the length of themazewere convolvedwith aGaussian filter for left turn

trials.

(E) Left: White cue onset. Right: 4 Gaussian basis functions that span the first 2 s of white cue-left turn trials.

(F) Left: White cue offset. (delay period onset). Right: 6 total basis functions, 2 basis functions extended for 1 s preceding cue offset and 4 basis functions

extended for 2 s following cue offset.

(G–I) Left: Movement of spherical treadmill. Right: 8 basis functions total for each of 3 running speed signals were extended 1 s forward and backward in time to

model predictive and responsive signals.

(J) Left: Inter-trial interval. Right: 4 basis functions that extended for 2 s forward in time following trial end.

(K) Left: Reward times. Right: 4 basis functions that extended for 2 s forward in time following reward.

(L) Left: All trial and behavioral measurements. Right: All basis functions for GLM, excluding novel cue onset and offset (same as black and white cue basis

functions).



Figure S5. Fitting Activity-Behavior Relationships with a Generalized Linear Model, Related to Figure 4

(A) For three example cells, a segment of activity is shown (black) along with the activity predicted from the GLM (blue). Deviance explained is calculated directly

from single frame predictions.

(B) Same as in panel A, except for the mean activity on white cue-left turn and black cue-right turn trials. Deviance explained is calculated from trial averaged

predictions, concatenated white cue-left turn and black cue-right turn mean activity.

(C) Distribution of the quality of model fits measured by deviance explained compared to a null model for trial averaged predictions (STAR Methods). The model

was fit and tested on data from the same day. n = 17,353 model fits across cells and days.

(D) Distribution of deviance explained for models fit on each day divided into five groups. Similar distributions of fits were apparent on each day. Shaded regions

indicate mean ± sem for n = 5 mice (fewer mice on some later days, see Figure S2K for the number of mice at each interval).

(E) Left: For cells in which a model with a significant prediction of activity could not be developed on day n, the fraction of cells that had a model with a significant

prediction of activity that could be developed on day n+1. Shaded region indicates mean ± sem acrossmice n = 5 (fewermice on some later days). Right: For cells

with a significant model prediction on day n, the fraction of cells that had consistent (black), lost (medium gray), and switched (light gray) activity-behavior re-

lationships on day n+1. Changes were as defined in Figure 4D. Shaded region indicates mean ± sem. n = 5 (fewer mice on some later days).

(legend continued on next page)



(F) Left: Kendall rank correlation coefficients of model beta coefficients fit on separate days. Diagonal values are 1. The values were averaged across all cells for

each mouse and then averaged across mice. Each entry has a variable number of data points (and in some case no data points, white values) due to varying

durations of imaging periods for mice and gaps between imaging sessions. See Figure S2K for the number of mice at each interval. Right: Average correlation

coefficient when fit and tested on data separated by n days. Shading indicates mean ± sem. See Figure S2K for the number of mice at each interval.

(G) Examples of cells that had ‘modes’ of activity. ‘Modes’ were commonly observed such that neurons had long stretches of similar activity followed by abrupt

changes. Left: Matrix of fitting and testing comparisons binarized as significant predictions and poor predictions. Right: Mean activity for example cells.



Figure S6. Behavioral Features Were Variable but Had Overlapping Distributions across Days, Related to Figure 4

(A) For each mouse, the distribution of trial durations from cue onset to trial end.

(B) For each mouse, the distribution of treadmill speed for forward translation in the virtual environment (about the pitch axis relative to the mouse’s body axis).

(C) For each mouse, the distribution of treadmill speed for rotation in the virtual environment (about the roll axis relative to the mouse’s body).

(D) Similarity in population activity as a function of days separating sessions for the trials with the most or least similar behavioral patterns. Behavioral patterns

were compared using an all-sessionmean-subtracted vector of all measured behavioral parameters (forward speed, clockwise speed, view angle, position along

stem axis, and position along arm axis) at each position in themaze (5 parameters x 21 spatial bins). Similarity was determined as the pairwise trial-trial correlation

coefficient of this behavioral parameter vector. Population activity patterns were compared using a vector of population activity (neurons x 21 spatial bins).

Similarity was determined as the pairwise trial-trial correlation coefficient of this population activity vector. Trials with more similar behavioral patterns were often

found on sessions that were separated by a smaller time interval. However, there were some pairs of sessions in the top 10% most similar that spanned the full

duration of our experiment, and some pairs of sessions in the 10% least similar that were found in neighboring days. Error bars indicate mean ± sem (n = 5 mice;

some large interval data points had fewer than 5 mice, see Figure S2K).

(E) Left: Behavioral performance over the first ten trials on each imaging day for all mice. Right: Cumulative density plot of behavioral performance on the first ten

trials of imaging days.



Figure S7. Optogenetic Inactivation during First Half and Second Half of Trials, Related to Figure 6

Optogenetic inactivation during the first half of the T-stem (left), second half of the T-stem (middle), and entire T-stem (right). For each manipulation, trials were

pooled across multiple sessions. Points indicate mean ± sem. n = 4mice. *** indicates p < 0.001 based on bootstrap shuffle of control and inactivation trial labels.

p = 0.06 for the second half of the T-stem (middle).
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